3.3.57 \(\int \frac {(A+B \cos (c+d x)) \sec ^4(c+d x)}{a+b \cos (c+d x)} \, dx\) [257]

3.3.57.1 Optimal result
3.3.57.2 Mathematica [B] (verified)
3.3.57.3 Rubi [A] (verified)
3.3.57.4 Maple [A] (verified)
3.3.57.5 Fricas [A] (verification not implemented)
3.3.57.6 Sympy [F]
3.3.57.7 Maxima [F(-2)]
3.3.57.8 Giac [B] (verification not implemented)
3.3.57.9 Mupad [B] (verification not implemented)

3.3.57.1 Optimal result

Integrand size = 31, antiderivative size = 187 \[ \int \frac {(A+B \cos (c+d x)) \sec ^4(c+d x)}{a+b \cos (c+d x)} \, dx=\frac {2 b^3 (A b-a B) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^4 \sqrt {a-b} \sqrt {a+b} d}-\frac {\left (a^2+2 b^2\right ) (A b-a B) \text {arctanh}(\sin (c+d x))}{2 a^4 d}+\frac {\left (2 a^2 A+3 A b^2-3 a b B\right ) \tan (c+d x)}{3 a^3 d}-\frac {(A b-a B) \sec (c+d x) \tan (c+d x)}{2 a^2 d}+\frac {A \sec ^2(c+d x) \tan (c+d x)}{3 a d} \]

output
-1/2*(a^2+2*b^2)*(A*b-B*a)*arctanh(sin(d*x+c))/a^4/d+2*b^3*(A*b-B*a)*arcta 
n((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^4/d/(a-b)^(1/2)/(a+b)^(1/2 
)+1/3*(2*A*a^2+3*A*b^2-3*B*a*b)*tan(d*x+c)/a^3/d-1/2*(A*b-B*a)*sec(d*x+c)* 
tan(d*x+c)/a^2/d+1/3*A*sec(d*x+c)^2*tan(d*x+c)/a/d
 
3.3.57.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(422\) vs. \(2(187)=374\).

Time = 1.99 (sec) , antiderivative size = 422, normalized size of antiderivative = 2.26 \[ \int \frac {(A+B \cos (c+d x)) \sec ^4(c+d x)}{a+b \cos (c+d x)} \, dx=\frac {\frac {24 b^3 (-A b+a B) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\sqrt {-a^2+b^2}}-6 \left (a^2+2 b^2\right ) (-A b+a B) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+6 \left (a^2+2 b^2\right ) (-A b+a B) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {a^2 (-3 A b+a (A+3 B))}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {2 a^3 A \sin \left (\frac {1}{2} (c+d x)\right )}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3}+\frac {4 a \left (2 a^2 A+3 A b^2-3 a b B\right ) \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}+\frac {2 a^3 A \sin \left (\frac {1}{2} (c+d x)\right )}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3}-\frac {a^2 (-3 A b+a (A+3 B))}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {4 a \left (2 a^2 A+3 A b^2-3 a b B\right ) \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )}}{12 a^4 d} \]

input
Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^4)/(a + b*Cos[c + d*x]),x]
 
output
((24*b^3*(-(A*b) + a*B)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2 
]])/Sqrt[-a^2 + b^2] - 6*(a^2 + 2*b^2)*(-(A*b) + a*B)*Log[Cos[(c + d*x)/2] 
 - Sin[(c + d*x)/2]] + 6*(a^2 + 2*b^2)*(-(A*b) + a*B)*Log[Cos[(c + d*x)/2] 
 + Sin[(c + d*x)/2]] + (a^2*(-3*A*b + a*(A + 3*B)))/(Cos[(c + d*x)/2] - Si 
n[(c + d*x)/2])^2 + (2*a^3*A*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] - Sin[(c 
+ d*x)/2])^3 + (4*a*(2*a^2*A + 3*A*b^2 - 3*a*b*B)*Sin[(c + d*x)/2])/(Cos[( 
c + d*x)/2] - Sin[(c + d*x)/2]) + (2*a^3*A*Sin[(c + d*x)/2])/(Cos[(c + d*x 
)/2] + Sin[(c + d*x)/2])^3 - (a^2*(-3*A*b + a*(A + 3*B)))/(Cos[(c + d*x)/2 
] + Sin[(c + d*x)/2])^2 + (4*a*(2*a^2*A + 3*A*b^2 - 3*a*b*B)*Sin[(c + d*x) 
/2])/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))/(12*a^4*d)
 
3.3.57.3 Rubi [A] (verified)

Time = 1.40 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.09, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.484, Rules used = {3042, 3479, 25, 3042, 3534, 25, 3042, 3534, 27, 3042, 3480, 3042, 3138, 218, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^4(c+d x) (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4 \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 3479

\(\displaystyle \frac {\int -\frac {\left (-2 A b \cos ^2(c+d x)-2 a A \cos (c+d x)+3 (A b-a B)\right ) \sec ^3(c+d x)}{a+b \cos (c+d x)}dx}{3 a}+\frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\int \frac {\left (-2 A b \cos ^2(c+d x)-2 a A \cos (c+d x)+3 (A b-a B)\right ) \sec ^3(c+d x)}{a+b \cos (c+d x)}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\int \frac {-2 A b \sin \left (c+d x+\frac {\pi }{2}\right )^2-2 a A \sin \left (c+d x+\frac {\pi }{2}\right )+3 (A b-a B)}{\sin \left (c+d x+\frac {\pi }{2}\right )^3 \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{3 a}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {\int -\frac {\left (-3 b (A b-a B) \cos ^2(c+d x)+a (A b+3 a B) \cos (c+d x)+2 \left (2 A a^2-3 b B a+3 A b^2\right )\right ) \sec ^2(c+d x)}{a+b \cos (c+d x)}dx}{2 a}+\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}}{3 a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}-\frac {\int \frac {\left (-3 b (A b-a B) \cos ^2(c+d x)+a (A b+3 a B) \cos (c+d x)+2 \left (2 A a^2-3 b B a+3 A b^2\right )\right ) \sec ^2(c+d x)}{a+b \cos (c+d x)}dx}{2 a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}-\frac {\int \frac {-3 b (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (A b+3 a B) \sin \left (c+d x+\frac {\pi }{2}\right )+2 \left (2 A a^2-3 b B a+3 A b^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 a}}{3 a}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}-\frac {\frac {\int -\frac {3 \left (\left (a^2+2 b^2\right ) (A b-a B)+a b \cos (c+d x) (A b-a B)\right ) \sec (c+d x)}{a+b \cos (c+d x)}dx}{a}+\frac {2 \left (2 a^2 A-3 a b B+3 A b^2\right ) \tan (c+d x)}{a d}}{2 a}}{3 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}-\frac {\frac {2 \left (2 a^2 A-3 a b B+3 A b^2\right ) \tan (c+d x)}{a d}-\frac {3 \int \frac {\left (\left (a^2+2 b^2\right ) (A b-a B)+a b \cos (c+d x) (A b-a B)\right ) \sec (c+d x)}{a+b \cos (c+d x)}dx}{a}}{2 a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}-\frac {\frac {2 \left (2 a^2 A-3 a b B+3 A b^2\right ) \tan (c+d x)}{a d}-\frac {3 \int \frac {\left (a^2+2 b^2\right ) (A b-a B)+a b \sin \left (c+d x+\frac {\pi }{2}\right ) (A b-a B)}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}}{2 a}}{3 a}\)

\(\Big \downarrow \) 3480

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}-\frac {\frac {2 \left (2 a^2 A-3 a b B+3 A b^2\right ) \tan (c+d x)}{a d}-\frac {3 \left (\frac {\left (a^2+2 b^2\right ) (A b-a B) \int \sec (c+d x)dx}{a}-\frac {2 b^3 (A b-a B) \int \frac {1}{a+b \cos (c+d x)}dx}{a}\right )}{a}}{2 a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}-\frac {\frac {2 \left (2 a^2 A-3 a b B+3 A b^2\right ) \tan (c+d x)}{a d}-\frac {3 \left (\frac {\left (a^2+2 b^2\right ) (A b-a B) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 b^3 (A b-a B) \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}\right )}{a}}{2 a}}{3 a}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}-\frac {\frac {2 \left (2 a^2 A-3 a b B+3 A b^2\right ) \tan (c+d x)}{a d}-\frac {3 \left (\frac {\left (a^2+2 b^2\right ) (A b-a B) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {4 b^3 (A b-a B) \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{a d}\right )}{a}}{2 a}}{3 a}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}-\frac {\frac {2 \left (2 a^2 A-3 a b B+3 A b^2\right ) \tan (c+d x)}{a d}-\frac {3 \left (\frac {\left (a^2+2 b^2\right ) (A b-a B) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {4 b^3 (A b-a B) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}\right )}{a}}{2 a}}{3 a}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {A \tan (c+d x) \sec ^2(c+d x)}{3 a d}-\frac {\frac {3 (A b-a B) \tan (c+d x) \sec (c+d x)}{2 a d}-\frac {\frac {2 \left (2 a^2 A-3 a b B+3 A b^2\right ) \tan (c+d x)}{a d}-\frac {3 \left (\frac {\left (a^2+2 b^2\right ) (A b-a B) \text {arctanh}(\sin (c+d x))}{a d}-\frac {4 b^3 (A b-a B) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}\right )}{a}}{2 a}}{3 a}\)

input
Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^4)/(a + b*Cos[c + d*x]),x]
 
output
(A*Sec[c + d*x]^2*Tan[c + d*x])/(3*a*d) - ((3*(A*b - a*B)*Sec[c + d*x]*Tan 
[c + d*x])/(2*a*d) - ((-3*((-4*b^3*(A*b - a*B)*ArcTan[(Sqrt[a - b]*Tan[(c 
+ d*x)/2])/Sqrt[a + b]])/(a*Sqrt[a - b]*Sqrt[a + b]*d) + ((a^2 + 2*b^2)*(A 
*b - a*B)*ArcTanh[Sin[c + d*x]])/(a*d)))/a + (2*(2*a^2*A + 3*A*b^2 - 3*a*b 
*B)*Tan[c + d*x])/(a*d))/(2*a))/(3*a)
 

3.3.57.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3479
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin 
[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 
1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e 
 + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 
2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B) 
*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n 
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Rat 
ionalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(I 
ntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0]) 
))
 

rule 3480
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A*b 
- a*B)/(b*c - a*d)   Int[1/(a + b*Sin[e + f*x]), x], x] + Simp[(B*c - A*d)/ 
(b*c - a*d)   Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.3.57.4 Maple [A] (verified)

Time = 1.86 (sec) , antiderivative size = 335, normalized size of antiderivative = 1.79

method result size
derivativedivides \(\frac {-\frac {A}{3 a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {-a A -A b +B a}{2 a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {\left (-A \,a^{2} b -2 A \,b^{3}+B \,a^{3}+2 B a \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 a^{4}}-\frac {2 A \,a^{2}+A a b +2 A \,b^{2}-B \,a^{2}-2 B a b}{2 a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {2 b^{3} \left (A b -B a \right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{4} \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {A}{3 a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {a A +A b -B a}{2 a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {\left (A \,a^{2} b +2 A \,b^{3}-B \,a^{3}-2 B a \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 a^{4}}-\frac {2 A \,a^{2}+A a b +2 A \,b^{2}-B \,a^{2}-2 B a b}{2 a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}}{d}\) \(335\)
default \(\frac {-\frac {A}{3 a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {-a A -A b +B a}{2 a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {\left (-A \,a^{2} b -2 A \,b^{3}+B \,a^{3}+2 B a \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 a^{4}}-\frac {2 A \,a^{2}+A a b +2 A \,b^{2}-B \,a^{2}-2 B a b}{2 a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {2 b^{3} \left (A b -B a \right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{4} \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {A}{3 a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {a A +A b -B a}{2 a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {\left (A \,a^{2} b +2 A \,b^{3}-B \,a^{3}-2 B a \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 a^{4}}-\frac {2 A \,a^{2}+A a b +2 A \,b^{2}-B \,a^{2}-2 B a b}{2 a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}}{d}\) \(335\)
risch \(\frac {i \left (3 A a b \,{\mathrm e}^{5 i \left (d x +c \right )}-3 B \,a^{2} {\mathrm e}^{5 i \left (d x +c \right )}+6 A \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}-6 B a b \,{\mathrm e}^{4 i \left (d x +c \right )}+12 A \,a^{2} {\mathrm e}^{2 i \left (d x +c \right )}+12 A \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-12 B a b \,{\mathrm e}^{2 i \left (d x +c \right )}-3 A a b \,{\mathrm e}^{i \left (d x +c \right )}+3 B \,a^{2} {\mathrm e}^{i \left (d x +c \right )}+4 A \,a^{2}+6 A \,b^{2}-6 B a b \right )}{3 d \,a^{3} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A b}{2 a^{2} d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A \,b^{3}}{a^{4} d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{2 a d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B \,b^{2}}{a^{3} d}-\frac {b^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) A}{\sqrt {-a^{2}+b^{2}}\, d \,a^{4}}+\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, d \,a^{3}}+\frac {b^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) A}{\sqrt {-a^{2}+b^{2}}\, d \,a^{4}}-\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, d \,a^{3}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A b}{2 a^{2} d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A \,b^{3}}{a^{4} d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{2 a d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B \,b^{2}}{a^{3} d}\) \(663\)

input
int((A+B*cos(d*x+c))*sec(d*x+c)^4/(a+cos(d*x+c)*b),x,method=_RETURNVERBOSE 
)
 
output
1/d*(-1/3*A/a/(tan(1/2*d*x+1/2*c)+1)^3-1/2*(-A*a-A*b+B*a)/a^2/(tan(1/2*d*x 
+1/2*c)+1)^2+1/2/a^4*(-A*a^2*b-2*A*b^3+B*a^3+2*B*a*b^2)*ln(tan(1/2*d*x+1/2 
*c)+1)-1/2*(2*A*a^2+A*a*b+2*A*b^2-B*a^2-2*B*a*b)/a^3/(tan(1/2*d*x+1/2*c)+1 
)+2*b^3*(A*b-B*a)/a^4/((a-b)*(a+b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/ 
((a-b)*(a+b))^(1/2))-1/3*A/a/(tan(1/2*d*x+1/2*c)-1)^3-1/2*(A*a+A*b-B*a)/a^ 
2/(tan(1/2*d*x+1/2*c)-1)^2+1/2*(A*a^2*b+2*A*b^3-B*a^3-2*B*a*b^2)/a^4*ln(ta 
n(1/2*d*x+1/2*c)-1)-1/2*(2*A*a^2+A*a*b+2*A*b^2-B*a^2-2*B*a*b)/a^3/(tan(1/2 
*d*x+1/2*c)-1))
 
3.3.57.5 Fricas [A] (verification not implemented)

Time = 0.73 (sec) , antiderivative size = 729, normalized size of antiderivative = 3.90 \[ \int \frac {(A+B \cos (c+d x)) \sec ^4(c+d x)}{a+b \cos (c+d x)} \, dx=\left [\frac {6 \, {\left (B a b^{3} - A b^{4}\right )} \sqrt {-a^{2} + b^{2}} \cos \left (d x + c\right )^{3} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) + 3 \, {\left (B a^{5} - A a^{4} b + B a^{3} b^{2} - A a^{2} b^{3} - 2 \, B a b^{4} + 2 \, A b^{5}\right )} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (B a^{5} - A a^{4} b + B a^{3} b^{2} - A a^{2} b^{3} - 2 \, B a b^{4} + 2 \, A b^{5}\right )} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, A a^{5} - 2 \, A a^{3} b^{2} + 2 \, {\left (2 \, A a^{5} - 3 \, B a^{4} b + A a^{3} b^{2} + 3 \, B a^{2} b^{3} - 3 \, A a b^{4}\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (B a^{5} - A a^{4} b - B a^{3} b^{2} + A a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{12 \, {\left (a^{6} - a^{4} b^{2}\right )} d \cos \left (d x + c\right )^{3}}, -\frac {12 \, {\left (B a b^{3} - A b^{4}\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right )^{3} - 3 \, {\left (B a^{5} - A a^{4} b + B a^{3} b^{2} - A a^{2} b^{3} - 2 \, B a b^{4} + 2 \, A b^{5}\right )} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, {\left (B a^{5} - A a^{4} b + B a^{3} b^{2} - A a^{2} b^{3} - 2 \, B a b^{4} + 2 \, A b^{5}\right )} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (2 \, A a^{5} - 2 \, A a^{3} b^{2} + 2 \, {\left (2 \, A a^{5} - 3 \, B a^{4} b + A a^{3} b^{2} + 3 \, B a^{2} b^{3} - 3 \, A a b^{4}\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (B a^{5} - A a^{4} b - B a^{3} b^{2} + A a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{12 \, {\left (a^{6} - a^{4} b^{2}\right )} d \cos \left (d x + c\right )^{3}}\right ] \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)^4/(a+b*cos(d*x+c)),x, algorithm="fri 
cas")
 
output
[1/12*(6*(B*a*b^3 - A*b^4)*sqrt(-a^2 + b^2)*cos(d*x + c)^3*log((2*a*b*cos( 
d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2*sqrt(-a^2 + b^2)*(a*cos(d*x + 
c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + 
c) + a^2)) + 3*(B*a^5 - A*a^4*b + B*a^3*b^2 - A*a^2*b^3 - 2*B*a*b^4 + 2*A* 
b^5)*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(B*a^5 - A*a^4*b + B*a^3*b^2 
 - A*a^2*b^3 - 2*B*a*b^4 + 2*A*b^5)*cos(d*x + c)^3*log(-sin(d*x + c) + 1) 
+ 2*(2*A*a^5 - 2*A*a^3*b^2 + 2*(2*A*a^5 - 3*B*a^4*b + A*a^3*b^2 + 3*B*a^2* 
b^3 - 3*A*a*b^4)*cos(d*x + c)^2 + 3*(B*a^5 - A*a^4*b - B*a^3*b^2 + A*a^2*b 
^3)*cos(d*x + c))*sin(d*x + c))/((a^6 - a^4*b^2)*d*cos(d*x + c)^3), -1/12* 
(12*(B*a*b^3 - A*b^4)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a 
^2 - b^2)*sin(d*x + c)))*cos(d*x + c)^3 - 3*(B*a^5 - A*a^4*b + B*a^3*b^2 - 
 A*a^2*b^3 - 2*B*a*b^4 + 2*A*b^5)*cos(d*x + c)^3*log(sin(d*x + c) + 1) + 3 
*(B*a^5 - A*a^4*b + B*a^3*b^2 - A*a^2*b^3 - 2*B*a*b^4 + 2*A*b^5)*cos(d*x + 
 c)^3*log(-sin(d*x + c) + 1) - 2*(2*A*a^5 - 2*A*a^3*b^2 + 2*(2*A*a^5 - 3*B 
*a^4*b + A*a^3*b^2 + 3*B*a^2*b^3 - 3*A*a*b^4)*cos(d*x + c)^2 + 3*(B*a^5 - 
A*a^4*b - B*a^3*b^2 + A*a^2*b^3)*cos(d*x + c))*sin(d*x + c))/((a^6 - a^4*b 
^2)*d*cos(d*x + c)^3)]
 
3.3.57.6 Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^4(c+d x)}{a+b \cos (c+d x)} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sec ^{4}{\left (c + d x \right )}}{a + b \cos {\left (c + d x \right )}}\, dx \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)**4/(a+b*cos(d*x+c)),x)
 
output
Integral((A + B*cos(c + d*x))*sec(c + d*x)**4/(a + b*cos(c + d*x)), x)
 
3.3.57.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(A+B \cos (c+d x)) \sec ^4(c+d x)}{a+b \cos (c+d x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)^4/(a+b*cos(d*x+c)),x, algorithm="max 
ima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.3.57.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 412 vs. \(2 (170) = 340\).

Time = 0.32 (sec) , antiderivative size = 412, normalized size of antiderivative = 2.20 \[ \int \frac {(A+B \cos (c+d x)) \sec ^4(c+d x)}{a+b \cos (c+d x)} \, dx=\frac {\frac {3 \, {\left (B a^{3} - A a^{2} b + 2 \, B a b^{2} - 2 \, A b^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{4}} - \frac {3 \, {\left (B a^{3} - A a^{2} b + 2 \, B a b^{2} - 2 \, A b^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{4}} + \frac {12 \, {\left (B a b^{3} - A b^{4}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} a^{4}} - \frac {2 \, {\left (6 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 3 \, A a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 6 \, B a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, A b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 4 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 12 \, B a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, A b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, A a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 6 \, B a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, A b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3} a^{3}}}{6 \, d} \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)^4/(a+b*cos(d*x+c)),x, algorithm="gia 
c")
 
output
1/6*(3*(B*a^3 - A*a^2*b + 2*B*a*b^2 - 2*A*b^3)*log(abs(tan(1/2*d*x + 1/2*c 
) + 1))/a^4 - 3*(B*a^3 - A*a^2*b + 2*B*a*b^2 - 2*A*b^3)*log(abs(tan(1/2*d* 
x + 1/2*c) - 1))/a^4 + 12*(B*a*b^3 - A*b^4)*(pi*floor(1/2*(d*x + c)/pi + 1 
/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/ 
2*c))/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*a^4) - 2*(6*A*a^2*tan(1/2*d*x + 1 
/2*c)^5 - 3*B*a^2*tan(1/2*d*x + 1/2*c)^5 + 3*A*a*b*tan(1/2*d*x + 1/2*c)^5 
- 6*B*a*b*tan(1/2*d*x + 1/2*c)^5 + 6*A*b^2*tan(1/2*d*x + 1/2*c)^5 - 4*A*a^ 
2*tan(1/2*d*x + 1/2*c)^3 + 12*B*a*b*tan(1/2*d*x + 1/2*c)^3 - 12*A*b^2*tan( 
1/2*d*x + 1/2*c)^3 + 6*A*a^2*tan(1/2*d*x + 1/2*c) + 3*B*a^2*tan(1/2*d*x + 
1/2*c) - 3*A*a*b*tan(1/2*d*x + 1/2*c) - 6*B*a*b*tan(1/2*d*x + 1/2*c) + 6*A 
*b^2*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 - 1)^3*a^3))/d
 
3.3.57.9 Mupad [B] (verification not implemented)

Time = 5.41 (sec) , antiderivative size = 4696, normalized size of antiderivative = 25.11 \[ \int \frac {(A+B \cos (c+d x)) \sec ^4(c+d x)}{a+b \cos (c+d x)} \, dx=\text {Too large to display} \]

input
int((A + B*cos(c + d*x))/(cos(c + d*x)^4*(a + b*cos(c + d*x))),x)
 
output
(atan(((((8*tan(c/2 + (d*x)/2)*(8*A^2*b^9 - B^2*a^9 - 16*A^2*a*b^8 + 3*B^2 
*a^8*b + 16*A^2*a^2*b^7 - 16*A^2*a^3*b^6 + 13*A^2*a^4*b^5 - 7*A^2*a^5*b^4 
+ 3*A^2*a^6*b^3 - A^2*a^7*b^2 + 8*B^2*a^2*b^7 - 16*B^2*a^3*b^6 + 16*B^2*a^ 
4*b^5 - 16*B^2*a^5*b^4 + 13*B^2*a^6*b^3 - 7*B^2*a^7*b^2 - 16*A*B*a*b^8 + 2 
*A*B*a^8*b + 32*A*B*a^2*b^7 - 32*A*B*a^3*b^6 + 32*A*B*a^4*b^5 - 26*A*B*a^5 
*b^4 + 14*A*B*a^6*b^3 - 6*A*B*a^7*b^2))/a^6 + (((8*(2*B*a^13 - 4*A*a^8*b^5 
 + 6*A*a^9*b^4 - 2*A*a^10*b^3 + 2*A*a^11*b^2 + 4*B*a^9*b^4 - 6*B*a^10*b^3 
+ 2*B*a^11*b^2 - 2*A*a^12*b - 2*B*a^12*b))/a^9 - (4*tan(c/2 + (d*x)/2)*(8* 
a^10*b + 8*a^8*b^3 - 16*a^9*b^2)*(2*A*b^3 - B*a^3 + A*a^2*b - 2*B*a*b^2))/ 
a^10)*(2*A*b^3 - B*a^3 + A*a^2*b - 2*B*a*b^2))/(2*a^4))*(2*A*b^3 - B*a^3 + 
 A*a^2*b - 2*B*a*b^2)*1i)/(2*a^4) + (((8*tan(c/2 + (d*x)/2)*(8*A^2*b^9 - B 
^2*a^9 - 16*A^2*a*b^8 + 3*B^2*a^8*b + 16*A^2*a^2*b^7 - 16*A^2*a^3*b^6 + 13 
*A^2*a^4*b^5 - 7*A^2*a^5*b^4 + 3*A^2*a^6*b^3 - A^2*a^7*b^2 + 8*B^2*a^2*b^7 
 - 16*B^2*a^3*b^6 + 16*B^2*a^4*b^5 - 16*B^2*a^5*b^4 + 13*B^2*a^6*b^3 - 7*B 
^2*a^7*b^2 - 16*A*B*a*b^8 + 2*A*B*a^8*b + 32*A*B*a^2*b^7 - 32*A*B*a^3*b^6 
+ 32*A*B*a^4*b^5 - 26*A*B*a^5*b^4 + 14*A*B*a^6*b^3 - 6*A*B*a^7*b^2))/a^6 - 
 (((8*(2*B*a^13 - 4*A*a^8*b^5 + 6*A*a^9*b^4 - 2*A*a^10*b^3 + 2*A*a^11*b^2 
+ 4*B*a^9*b^4 - 6*B*a^10*b^3 + 2*B*a^11*b^2 - 2*A*a^12*b - 2*B*a^12*b))/a^ 
9 + (4*tan(c/2 + (d*x)/2)*(8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2)*(2*A*b^3 - B 
*a^3 + A*a^2*b - 2*B*a*b^2))/a^10)*(2*A*b^3 - B*a^3 + A*a^2*b - 2*B*a*b...